These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Author: Boskey A, Spevak L, Tan M, Doty SB, Butler WT. Journal: Calcif Tissue Int; 2000 Dec; 67(6):472-8. PubMed ID: 11289697. Abstract: Sialoproteins such as bone sialoprotein (BSP) and dentin sialoprotein (DSP) accumulate at the mineralization fronts in bone and dentin, respectively, suggesting they have some function in the mineralization process. BSP, a highly phosphorylated protein rich in polyglutamate repeats, is an effective nucleator of hydroxyapatite (HA) formation in vitro. The present study examines the effect of DSP, a low phosphorylated but related sialoprotein, on the formation and growth of HA. In vitro, in a gelatin gel diffusion system, DSP at low concentrations (<25 microg/ml) slightly increased the yield of HA formed at 3.5 and 5 days, while at higher concentrations (50-100 microg/ml) it slightly inhibited accumulation. Fewer mineral crystals were formed in the presence of high concentrations of DSP but they tended to aggregate (making them appear larger by electron microscopic analysis) than those formed in DSP-free gels. X-ray diffraction line broadening analysis failed to show significant changes in c-axis crystal dimensions with increasing DSP concentration. When HA-seed crystals were coated with DSP before inclusion in the gelatin gel there was a reduction in mineral accumulation relative to HA-seeds which had not been coated with DSP, but the extent of inhibition was significantly less than that seen in this system with other mineralized tissue matrix sialoproteins, such as osteopontin or BSP. The low affinity of DSP for well-characterized seed crystals and the limited effect of this protein on HA formation and growth suggest that the role of DSP in dentin is not primarily that of a mineralization regulator.[Abstract] [Full Text] [Related] [New Search]