These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 1,25(OH)(2)D(3) stimulates Mg2+ uptake into MDCT cells: modulation by extracellular Ca2+ and Mg2+. Author: Ritchie G, Kerstan D, Dai LJ, Kang HS, Canaff L, Hendy GN, Quamme GA. Journal: Am J Physiol Renal Physiol; 2001 May; 280(5):F868-78. PubMed ID: 11292630. Abstract: The distal convoluted tubule plays a significant role in renal magnesium conservation. Although the cells of the distal convoluted tubule possess the vitamin D receptor, little is known about the effects of 1alpha,25-dihydroxyvitamin D [1,25(OH)(2)D(3)] on magnesium transport. In this study, we examined the effect of 1,25(OH)(2)D(3) on distal cellular magnesium uptake and the modulation of this response by extracellular Ca2+ and Mg2+ in an immortalized mouse distal convoluted tubule (MDCT) cell line. MDCT cells possess the divalent cation-sensing receptor (CaSR) that responds to elevation of extracellular Ca2+ and Mg2+ concentrations to diminish peptide hormone-stimulated Mg2+ uptake. Mg2+ uptake rates were determined by microfluorescence in Mg2+ -depleted MDCT cells. Treatment of MDCT cells with 1,25(OH)(2)D(3) for 16-24 h stimulated basal Mg2+ uptake in a concentration-dependent manner from basal levels of 164 +/- 5 to 210 +/- 11 nM/s, representing a 28 +/- 3% change. Pretreatment with actinomycin D or cycloheximide abolished 1,25(OH)(2)D(3)-stimulated(.)Mg2+ uptake (154 +/- 18 nM/s), suggesting that 1,25(OH)(2)D(3) stimulates Mg2+ uptake through gene activation and protein synthesis. Elevation of extracellular Ca2+ inhibited 1,25(OH)(2)D(3)-stimulated Mg2+ uptake (143 +/- 5 nM/s). Preincubation of the cells with an antibody to the CaSR prevented the inhibition by elevated extracellular Ca2+ of 1,25(OH)(2)D(3)-stimulated Mg2+ uptake (202 +/- 8 nM/s). Treatment with an antisense CaSR mRNA oligodeoxynucleotide also abolished the effects of extracellular Ca2+ on 1,25(OH)(2)D(3)-responsive Mg2+ entry. This showed that elevated extracellular calcium modulates 1,25(OH)(2)D-mediated responses through the CaSR. In summary, 1,25(OH)(2)D(3) stimulated Mg2+ uptake in MDCT cells, and this is dependent on de novo protein synthesis. Elevation of extracellular Ca2+, acting via the CaSR, inhibited 1,25(OH)(2)D(3)-stimulated Mg2+ entry. These data indicate that 1,25(OH)(2)D(3) has important effects on the control of magnesium entry in MDCT cells and these responses can be modulated by extracellular divalent cations.[Abstract] [Full Text] [Related] [New Search]