These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A CalDAG-GEFI/Rap1/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2. Author: Guo FF, Kumahara E, Saffen D. Journal: J Biol Chem; 2001 Jul 06; 276(27):25568-81. PubMed ID: 11292831. Abstract: In this study we examine signaling pathways linking the M(1) subtype of muscarinic acetylcholine receptor (M(1) mAChR) to activation of extracellular signal-regulated kinases (ERK) 1 and 2 in neuronal PC12D cells. We first show that activation of ERK1/2 by the M(1) mAChR agonist carbachol takes place primarily via a Ras-independent pathway that depends largely upon Rap1, another small GTP-binding protein in the Ras family. Rap1 in turn activates B-Raf, an upstream activator of ERK1/2. Consistent with these results, carbachol was found to activate Rap1 more potently than Ras. Similar to other small GTP-binding proteins, activation of Rap1 requires a guanine nucleotide exchange factor (GEF) to promote its conversion from the GDP- to GTP-bound form. Using specific antibodies, we show that a recently identified Rap1 GEF, calcium- and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), is expressed in PC12D cells and that carbachol stimulates the formation of a complex containing CalDAG-GEFI, Rap1, and activated B-Raf. Finally, we show that expression of CalDAG-GEFI antisense RNA largely blocks carbachol-stimulated activation of hemagglutinin (HA)1-tagged B-Raf and formation of the CalDAG-GEFI/Rap1/HA1-tagged B-Raf complex. Together, these data define a novel signaling pathway for M(1) mAChR, where increases in Ca(2+) and diacylglycerol stimulate the sequential activation of CalDAG-GEFI, Rap1, and B-Raf, resulting in the activation of MEK and ERK1/2.[Abstract] [Full Text] [Related] [New Search]