These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Author: Cano M, Calonge ML, Peral MJ, Ilundáin AA.
    Journal: Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251.
    Abstract:
    The presence of a Na+/D-mannose cotransporter in brush-border membrane vesicles (BBMV) isolated from chicken small intestine was examined. In the presence of an electrochemical gradient for Na+, but not in its absence, D-mannose was accumulated transiently by the BBMV. D-Mannose uptake into the BBMV was energized by both the membrane potential and the chemical gradient for Na+. The relationship between D-mannose transport and external D-mannose concentration was described by an equation that represented the superposition of a saturable component (Michaelis-Menten constant Km 12.5 microM) and another component unsaturatable up to 80 microM D-mannose. D-Mannose uptake was inhibited by various substances in the following order of potency: D-mannose>>D-glucose>phlorizin>phloretin>D-fructose. For the uptake of alpha-methyl-glucopyranoside the order was D-glucose=phlorizin>>phloretin=D-fructose=D-mannose. The initial rate of D-mannose uptake increased as the extravesicular [Na+] increased, with a Hill coefficient of 1, suggesting that the Na+:D-mannose cotransport stoichiometry is 1:1. It is concluded that the intestinal apical membrane has a saturable, electrogenic and concentration- and Na+-dependent mannose transport mechanism that differs from the sodium-dependent glucose transporter SGLT1.
    [Abstract] [Full Text] [Related] [New Search]