These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Age-related changes in adenosine-mediated relaxation of coronary and aortic smooth muscle.
    Author: Hinschen AK, Rose'Meyer RB, Headrick JP.
    Journal: Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2380-9. PubMed ID: 11299245.
    Abstract:
    We tested whether adenosine mediates nitric oxide (NO)-dependent and NO-independent dilation in coronary and aortic smooth muscle and whether age selectively impairs NO-dependent adenosine relaxation. Responses to adenosine and the relatively nonselective analog 5'-N-ethylcarboxamidoadenosine (NECA) were studied in coronary vessels and aortas from immature (1-2 mo), mature (3-4 mo), and moderately aged (12-18 mo) Wistar and Sprague-Dawley rats. Adenosine and NECA induced biphasic concentration-dependent coronary vasodilation, with data supporting high-sensitivity (pEC(50) = 5.2-5.8) and low-sensitivity (pEC(50) = 2.3-2.4) adenosine sites. Although sensitivity to adenosine and NECA was unaltered by age, response magnitude declined significantly. Treatment with 50 microM N(G)-nitro-L-arginine methyl ester (L-NAME) markedly inhibited the high-sensitivity site, although response magnitude still declined with age. Aortic sensitivity to adenosine declined with age (pEC(50) = 4.7 +/- 0.2, 3.5 +/- 0.2, and 2.9 +/- 0.1 in immature, mature, and moderately aged aortas, respectively), and the adenosine receptor transduction maximum also decreased (16.1 +/- 0.8, 12.9 +/- 0.7, and 9.6 +/- 0.7 mN/mm(2) in immature, mature, and moderately aged aortas, respectively). L-NAME decreased aortic sensitivity to adenosine in immature and mature tissues but was ineffective in the moderately aged aorta. Data collectively indicate that 1) adenosine mediates NO-dependent and NO-independent coronary and aortic relaxation, 2) maturation and aging reduce NO-independent and NO-dependent adenosine responses, and 3) the age-related decline in aortic response also involves a reduction in the adenosine receptor transduction maximum.
    [Abstract] [Full Text] [Related] [New Search]