These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Author: Qin H, Rosenbaum JL, Barr MM. Journal: Curr Biol; 2001 Mar 20; 11(6):457-61. PubMed ID: 11301258. Abstract: In this report, we show that the Caenorhabditis elegans gene osm-5 is homologous to the Chlamydomonas gene IFT88 and the mouse autosomal recessive polycystic kidney disease (ARPKD) gene, Tg737. The function of this ARPKD gene may be evolutionarily conserved: mutations result in defective ciliogenesis in worms [1], algae [2], and mice [2, 3]. Intraflagellar transport (IFT) is essential for the development and maintenance of motile and sensory cilia [4]. The biochemically isolated IFT particle from Chlamydomonas flagella is composed of 16 polypeptides in one of two Complexes (A and B) [5, 6] whose movement is powered by kinesin II (anterograde) and cytoplasmic dynein (retrograde) [7-9]. We demonstrate that OSM-5 (a Complex B polypeptide), DAF-10 and CHE-11 (two Complex A polypeptides), and CHE-2 [10], a previously uncategorized IFT polypeptide, all move at the same rate in C. elegans sensory cilia. In the absence of osm-5, the C. elegans autosomal dominant PKD (ADPKD) gene products [11] accumulate in stunted cilia, suggesting that abnormal or lack of cilia or defects in IFT may result in diseases such as polycystic kidney disease (PKD).[Abstract] [Full Text] [Related] [New Search]