These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study.
    Author: Wilke M, Kaufmann C, Grabner A, Pütz B, Wetter TC, Auer DP.
    Journal: Neuroimage; 2001 May; 13(5):814-24. PubMed ID: 11304078.
    Abstract:
    Voxel-based morphometry has recently been used successfully to detect gray matter volume reductions in schizophrenic patients. The aim of the present study was to confirm the findings on gray-matter changes and to complement these by applying the methodology to CSF-differences. Also, we wanted to determine whether a correlation exists between a clinically defined parameter of disease severity and brain morphology in schizophrenic patients. We investigated 48 schizophrenic patients and compared them with 48 strictly age- and sex-matched controls. High-resolution whole-brain MR-images were segmented and analyzed using SPM99. In a further analysis, the covariate effect of the global assessment of functioning-score (GAF) was calculated. Main findings were (i) left-dominant frontal, temporal, and insular GM-reductions and (ii) GM-increases in schizophrenic patients in the right basal ganglia and bilaterally in the superior cerebellum; (iii) CSF-space increases in patients complementary to some GM-reductions; (iv) a correlation between the GAF-score and local GM-volume in the left inferior frontal and inferior parietal lobe of schizophrenic patients. This study confirms and extends some earlier findings on GM-reduction and detected distinct GM-increases in schizophrenic patients. These changes were corroborated by complementary CSF-increases. Most importantly, a correlation could be established between two particular gray matter-regions and the overall disease severity, with more severely ill patients displaying a local GM-deficit. These findings may be of potentially large importance for both the future interpretation and design of neuroimaging studies in schizophrenia and the further elucidation of possible pathophysiological processes occurring in this disease.
    [Abstract] [Full Text] [Related] [New Search]