These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of flow rate and potassium intake on distal tubular potassium transfer.
    Author: Khuri RN, Strieder WN, Giebisch G.
    Journal: Am J Physiol; 1975 Apr; 228(4):1249-61. PubMed ID: 1130523.
    Abstract:
    Potassium transport was studied across proximal and distal tubular epithelium in rats on a normal, low- and high-potassium intake during progressive loading with isotonic saline (150 mM) or a moderately hypersomotic urea (200 mM) sodium chloride (100 mM) solution. Free-flow micropuncture and recollection techniques were used during the development of diruesis and tubular fluid (TF) analyzed for inulin-14C, potassium (K) and sodium (Na). Tubular puncture sites were localized by neoprene filling and microdissection. During the large increase in tubular flow rates (10 times): 1) fractional potassium reabsorption fell along the proximal tubule, 2) TFk along the distal tubule remained constant and independent of flow rate in control and high-k rats; thus, net potassium secretion increased in proportion to and was limited by flow rate. 3) In low-K rats TF k fell; with increasing flow rates distal K secretion was not effectively stimulated. 4) Distal tubular sodium reabsorption increased in all animals with flow rate, but tubular Na-K exchange ratios varied greatly. It is suggested that whenever sodium delivery stimulates distal tubular potassium secretion it does so by 1) increasing volume distal tubular potasssium secretion and by 2) augmenting the transepithelial electrical potential difference (lumen negative).
    [Abstract] [Full Text] [Related] [New Search]