These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Disparate role of Na(+) channel D2-S6 residues in batrachotoxin and local anesthetic action.
    Author: Wang SY, Barile M, Wang GK.
    Journal: Mol Pharmacol; 2001 May; 59(5):1100-7. PubMed ID: 11306693.
    Abstract:
    Batrachotoxin (BTX) stabilizes the voltage-gated Na(+) channels in their open conformation, whereas local anesthetics (LAs) block Na(+) conductance. Site-directed mutagenesis has identified clusters of common residues at D1-S6, D3-S6, and D4-S6 segments within the alpha-subunit Na(+) channel that are critical for binding of these two types of ligands. In this report, we address whether segment D2-S6 is similarly involved in both BTX and LA actions. Thirteen amino acid positions from G783 to L795 of the rat skeletal muscle Na(+) channel ((mu)1/Skm1) were individually substituted with a lysine residue. Four mutants (N784K, L785K, V787K, and L788K) expressed sufficient Na(+) currents for further studies. Activation and/or inactivation gating was altered in mutant channels; in particular, mu1-V787K displays enhanced slow inactivation and exhibited use-dependent inhibition of peak Na(+) currents during repetitive pulses. Two of these four mutants, (mu)1-N784K and (mu)1-L788K, were completely resistant to 5 microM BTX. This BTX-resistant phenotype could be caused by structural perturbations induced by a lysine point mutation in the D2-S6 segment. However, these two BTX-resistant mutants remained quite sensitive to bupivacaine block with affinity for inactivated Na(+) channels (K(I)) of approximately 10 microM or less, which suggests that (mu)1-N784 and (mu)1-L788 residues are not in close proximity to the LA binding site.
    [Abstract] [Full Text] [Related] [New Search]