These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanical and histological evaluations of hydroxyapatite-coated and noncoated Ti6Al4V implants in tibia bone.
    Author: Chang CK, Wu JS, Mao DL, Ding CX.
    Journal: J Biomed Mater Res; 2001 Jul; 56(1):17-23. PubMed ID: 11309786.
    Abstract:
    This paper evaluates the behavior of hydroxyapatite (HAP) coated and noncoated Ti6Al4V implants in dog tibia after 3 and 5 months implantation. HPA-coated implants were obtained by plasma spraying. XRD, SEM, and EPMA were employed to estimate the coating characteristics and their behavior in vivo. Investigation of material characteristics showed that the as-received coatings consisted mainly of amorphism and HAP phase. Other phases such as TCP and CaO were identified due to thermal changes of HAP particles in plasma flame. SEM micrographs showed a typical microstructure of plasma-sprayed coating. The as-received coating was formed by well-melted pancake-like splats that lead to a dense coating with a rough surface. Lamellar structure, micropores, and microcracks, observed inside the coating, are characteristic of plasma spraying. Push-out tests revealed that HAP coating had a significant promotion of interfacial shear strength. The shear strength between bone and HAP-coated implants was much higher than that between bone and noncoated implants due to the different bone-implant interfaces formed after implantation. SEM observation revealed a direct attachment between HAP coating and newly formed bone. However, noncoated implants were separated from newly formed bone by fibrous tissues. Ti ions were found to be released into the surrounding environment after long time immersion in body fluid, and thus caused low shear strength. Prolongation of implantation time had different effects on shear strength. It improved the shear strength between HAP-coated implant and newly formed bone. However, it had little effect on that between noncoated implant and surrounding tissues.
    [Abstract] [Full Text] [Related] [New Search]