These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distribution of adrenomedullin-like immunoreactivity in the central nervous system of the frog.
    Author: Muñoz M, Martínez A, Cuttitta F, González A.
    Journal: J Chem Neuroanat; 2001 Mar; 21(2):105-23. PubMed ID: 11312053.
    Abstract:
    Adrenomedullin (AM) is a recently discovered peptide widely distributed in the mammalian brain. By using an antiserum specific for human AM, we have analyzed the localization of AM-like immunoreactivity in the brain and spinal cord of the anuran amphibian Rana perezi. Cell bodies immunoreactive (AMi) for AM were located in the dorsal, lateral and medial pallial regions, diagonal band of Broca, medial septum, and above and rostral to the anterior commissure. A large population of AMi neurons was located in the anterior preoptic area, suprachiasmatic nucleus and in the infundibular hypothalamus. The processes of these latter cells are part of the hypothalamo-hypophysial pathway to the neural and intermediate lobes. Labeled cells were observed in the pretectal region, posterior tubercle and the mesencephalic anteroventral tegmental nucleus. Strikingly, Purkinje cells in the cerebellum also showed AM immunoreactivity, albeit not all of these cells were equally stained. Additional cells were located in the parabrachial region, principal trigeminal sensory nucleus, reticular nuclei medius and inferior, and the intermediolateral gray of the spinal cord. Immunolabeled fibers were widespread throughout the brain and spinal cord of the frog. They were particularly abundant in the medial amygdala, hypothalamus, mesencephalic tectum, periventricular gray and spinal cord. The distribution pattern of AM-like immunoreactivity in the brain of the frog is very selective and does not correspond with the pattern observed for any other transmitter or neuroactive molecule. The wide distribution of this peptide strongly suggests that it may play a significant role in the multiple neuronal functions in the amphibian brain.
    [Abstract] [Full Text] [Related] [New Search]