These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct in vivo transfection of antisense Fas-ligand reduces tumor growth and invasion.
    Author: Nyhus JK, Wolford C, Feng L, Barbera-Guillem E.
    Journal: Gene Ther; 2001 Feb; 8(3):209-14. PubMed ID: 11313792.
    Abstract:
    The expression of Fas ligand (FasL) by tumor cells has been reported to have multiple, conflicting effects on tumor growth. The majority of the data support the theory that FasL expressing tumor cells evade immune surveillance by killing T cells expressing Fas. However, the role of the humoral immune-blockade by FasL expressing tumor cells has not been assessed. Using immune-competent mice, we observed that FasL expressing tumor cells reduced the antitumor antibody production together with the T and B cell content of the spleen in these mice. Further, to determine if the expression of FasL in the environment of the tumor suppresses the humoral antitumor immune response and influences tumor growth, a mouse model lacking T cells was used. To assess whether a local reduction of FasL could reduce tumor progression, a plasmid encoding antisense FasL cDNA was delivered directly into a growing tumor (SW620 colon carcinoma). Intratumoral delivery of the plasmid was able to transfect tumor cells, stromal cells, and peritumoral muscle cells. This antisense FasL tumor tissue transfection persisted for at least 25 days, produced a systemic decrease in soluble FasL, and resulted in a 50% reduction in the rate of tumor growth when compared with tumor tissue of the control groups. These results suggest that direct transfection of antisense FasL cDNA impairs FasL translation in tumor and stromal cells, and can inhibit tumor progression by impairing the FasL-mediated, stromal cell-assisted, tumor counter-attack.
    [Abstract] [Full Text] [Related] [New Search]