These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system.
    Author: Affleck DG, Yu L, Bull DA, Bailey SH, Kim SW.
    Journal: Gene Ther; 2001 Mar; 8(5):349-53. PubMed ID: 11313810.
    Abstract:
    Gene therapy is a potential new strategy for the treatment of cardiovascular disease. The most efficacious method of gene delivery remains a key hurdle to effective gene therapy. We present the application of a novel, nonviral gene delivery system (TerplexDNA) to augment myocardial transfection. The hearts of New Zealand white rabbits were injected with reporter genes, luciferase cDNA or beta-galactosidase cDNA, either as naked plasmid DNA or plasmid DNA complexed with stearyl-poly(L-lysine)-low density lipoprotein (TerplexDNA). Three day left heart myocardial cell lysates produced 44571 +/- 8730 RLU (RLU = total light units/mg protein) for the TerplexDNA luciferase rabbits versus 1638 +/- 567 RLU for the naked luciferase rabbits (P = 0.002). Thirty days after injection, myocardial lysates produced 677 +/- 52 RLU for the TerplexDNA luciferase hearts versus 18 +/- 3 RLU for the naked luciferase hearts (P = 0.002). Histologic analysis of the hearts transfected with beta-galactosidase showed that TerplexDNA increased the area and depth of transfection compared with the naked plasmid DNA alone. The hearts of Sprague-Dawley rats were injected in a similar fashion and analyzed at 1, 3, 5, 10, 15, 25 and 30 days after injection. The naked luciferase injected hearts showed transient elevation of luciferase activity to day 5 but fell back to baseline levels after that time-point. The TerplexDNA luciferase injected hearts had significantly elevated luciferase activity to 30 days. The Terplex gene delivery system significantly augments myocardial transfection compared with a naked plasmid DNA system alone. The advantage in transfection efficiency appears to be related to the unique properties of the TerplexDNA carrier molecule. The TerplexDNA delivery system represents a novel means to augment transfection of the myocardium.
    [Abstract] [Full Text] [Related] [New Search]