These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PKC delta mediates ionizing radiation-induced activation of c-Jun NH(2)-terminal kinase through MKK7 in human thyroid cells. Author: Mitsutake N, Namba H, Shklyaev SS, Tsukazaki T, Ohtsuru A, Ohba M, Kuroki T, Ayabe H, Yamashita S. Journal: Oncogene; 2001 Feb 22; 20(8):989-96. PubMed ID: 11314034. Abstract: The thyroid gland is one of the most sensitive organs in ionizing radiation (IR)-induced carcinogenesis. To determine, therefore, the specific cascade of IR-induced signal transduction in human thyroid cells, we investigated the functional role of protein kinase C (PKC), especially its interlocking activation of c-Jun NH(2)-terminal kinase (JNK) pathway. In the present study, using adenovirus expression vectors for diverse dominant-negative (DN) types of PKC isoforms (alpha, beta2, delta, epsilon and zeta) expressed in primary cultured human thyroid cells, only DN/PKC delta suppressed IR-induced JNK activation. In addition, Rottlerin, a PKC delta specific inhibitor, inhibited IR-induced JNK activation. IR-induced activation of transcription factor AP-1, downstream target of JNK, was also attenuated by DN/PKC delta. To examine the involvement of upstream kinases of JNK, we performed immune-complex kinase assays of mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. IR activated MKK7 but not MKK4, and this activation was inhibited by Rottlerin. Furthermore, IR-induced JNK activation was suppressed by overexpression of kinase-deficient MKK7. Our results indicate that IR selectively activates the cascade of PKC delta-MKK7-JNK-AP-1 in human thyroid cells, suggesting a not apoptotic but radio-resistant role of PKC delta in human thyroid cells following IR.[Abstract] [Full Text] [Related] [New Search]