These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of high-volume plasmapheresis on ammonia, urea, and amino acids in patients with acute liver failure. Author: Clemmesen JO, Kondrup J, Nielsen LB, Larsen FS, Ott P. Journal: Am J Gastroenterol; 2001 Apr; 96(4):1217-23. PubMed ID: 11316173. Abstract: OBJECTIVE: In acute liver failure (ALF), urea production is severely impaired, and detoxification of ammonia by glutamine synthesis plays an important protective role. The aim of this study was to examine the effects of therapeutic high-volume plasmapheresis (HVP) on arterial concentrations and splanchnic exchange rates of ammonia, urea, and amino acids-in particular, glutamine. METHODS: A quantity of 8 L of plasma was exchanged over the course of 7 h in 11 patients with ALF after development of hepatic encephalopathy grade III-IV. Splanchnic exchange rates of ammonia, urea, and amino acids were measured by use of liver vein catheterization. RESULTS: HVP removed ammonia and glutamine at a rate of 1 micromol/min and 27 micromol/min, respectively. Arterial ammonia decreased from 160 +/- 65 to 114 +/- 50 micromol/L (p < 0.001). In contrast, arterial glutamine was only minimally changed from 1791 +/- 1655 to 1764 +/- 1875 micromol/L (NS). This implied that the rate of systemic glutamine synthesis was increased by 27 micromol/min. Splanchnic exchange rates (before vs after HVP) were as follows: for ammonia, -93 +/- 101 versus -70 +/- 80 micromol/min (NS); urea-nitrogen, 0.08 +/- 1.64 versus -0.31 +/- 0.45 mmol/min (NS); alanine, -73 +/- 151 versus 12 +/- 83 micromol/min (p < 0.05); and glutamine: 132 +/- 246 versus 186 +/- 285 micromol/min (NS), with negative values denoting release. CONCLUSIONS: Arterial ammonia decreased during HVP in patients with ALF. The data suggest that this effect of HVP could be explained by increased hepatic urea synthesis and possibly by increased glutamine synthesis in muscle tissue.[Abstract] [Full Text] [Related] [New Search]