These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tetrabutylammonium: a selective blocker of the somatostatin-activated hyperpolarizing current in mouse AtT-20 corticotrophs.
    Author: Thomas P, Smith PA.
    Journal: Pflugers Arch; 2001 Mar; 441(6):816-23. PubMed ID: 11316266.
    Abstract:
    To obtain a clearer understanding of the mechanisms by which somatostatin modulates stimulus-secretion coupling in neuroendocrine cells, we investigated the pharmacology of the somatostatin-activated inward rectifier in mouse pituitary tumour cells (AtT-20 corticotrophs). Individual AtT-20 cells displayed spontaneous, long-lasting action potentials that caused transient spikes in cytosolic [Ca2+] ([Ca]i). Application of 1-10 nM somatostatin led to membrane hyperpolarization and loss of [Ca]i spiking activity. Voltage-clamp recordings revealed that the somatostatin-induced hyperpolarization was due to an inwardly rectifying K+ current. Tetrabutyl-ammonium (TBA+) inhibited both outward and inward currents through the inward rectifier, whereas Cs+ blocked only inward current and tetraethylammonium (TEA+) was completely ineffective in blocking somatostatin-activated currents. However TEA+, but neither TBA+ nor Cs+, blocked voltage-gated outward currents. Correspondingly, TBA+ abolished the hyperpolarizing effects of somatostatin and, of the three K+ channel blockers, only TBA+ prevented the somatostatin-induced inhibition of [Ca]i spiking. TBA+ may thus prove a useful tool in elucidating the underlying mechanisms by which somatostatin affects the secretory activity of neuroendocrine cells.
    [Abstract] [Full Text] [Related] [New Search]