These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nonprolyl cis peptide bonds in unfolded proteins cause complex folding kinetics.
    Author: Pappenberger G, Aygün H, Engels JW, Reimer U, Fischer G, Kiefhaber T.
    Journal: Nat Struct Biol; 2001 May; 8(5):452-8. PubMed ID: 11323723.
    Abstract:
    Folding of tendamistat, an inhibitor of alpha-amylase, is a fast two-state process accompanied by two minor slow reactions, which were assigned to prolyl isomerization. In a proline-free variant, 5% of the molecules still fold slowly with a rate constant of 2.5 s(-1). This reaction is caused by a slow equilibrium between two populations of unfolded molecules. The time constant for this equilibration process, its sensitivity to LiCl and its temperature dependence identify it as a cis-trans isomerization of nonprolyl peptide bonds. Although nonprolyl peptide bonds have the cis conformation populating only approximately 0.15% in unfolded proteins, their large number generates a significant fraction of slow-folding molecules. This emphasizes that heterogeneous populations in an unfolded protein can induce complex folding kinetics on various time scales.
    [Abstract] [Full Text] [Related] [New Search]