These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The cortical connections of area V6: an occipito-parietal network processing visual information.
    Author: Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M.
    Journal: Eur J Neurosci; 2001 Apr; 13(8):1572-88. PubMed ID: 11328351.
    Abstract:
    The aim of this work was to study the cortical connections of area V6 by injecting neuronal tracers into different retinotopic representations of this area. To this purpose, we first functionally recognized V6 by recording from neurons of the parieto-occipital cortex in awake macaque monkeys. Penetrations with recording syringes were performed in the behaving animals in order to inject tracers exactly at the recording sites. The tracers were injected into the central or peripheral field representation of V6 in different hemispheres. Irrespective of whether injections were made in the centre or periphery, area V6 showed reciprocal connections with areas V1, V2, V3, V3A, V4T, the middle temporal area /V5 (MT/V5), the medial superior temporal area (MST), the medial intraparietal area (MIP), the ventral intraparietal area (VIP), the ventral part of the lateral intraparietal area and the ventral part of area V6A (V6AV). No labelled cells or terminals were found in the inferior temporal, mesial and frontal cortices. The connections of V6 with V1, and with all the retinotopically organized prestriate areas, were organized retinotopically. The connection of V6 with MIP suggests a visuotopic organization for this latter. Labelling in V6A and VIP after either central or peripheral V6 injections was very similar in location and extent, as expected on the basis of the nonretinotopic organization of these areas. We suggest that V6 plays a pivotal role in the dorsal visual stream, by distributing the visual information coming from the occipital lobe to the sensorimotor areas of the parietal cortex. Given the functional characteristics of the cells of this network, we suggest that it could perform the fast form and motion analyses needed for the visual guiding of arm movements as well as their coordination with the eyes and the head.
    [Abstract] [Full Text] [Related] [New Search]