These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The expression and action of granulocyte macrophage-colony stimulating factor and its interaction with TGF-beta in endometrial carcinoma.
    Author: Ripley D, Tang XM, Ma C, Chegini N.
    Journal: Gynecol Oncol; 2001 May; 81(2):301-9. PubMed ID: 11330966.
    Abstract:
    OBJECTIVE: Previous studies have demonstrated that normal human endometrium expresses granulocyte macrophage-colony stimulating factor (GM-CSF) and GM-CSF receptors. Because GM-CSF is administer to cancer patients following chemotherapy, GM-CSF may directly or through interaction with ovarian steroids and other cytokines alter the behavior of endometrial cancer. The aim of this study was to determine the expression of GM-CSF and receptors in endometrial carcinoma and its direct effect and interaction with transforming growth factor beta (TGF-beta) on Ishikawa cells, a human endometrial carcinoma cell line. METHODS: GM-CSF, GM-CSF receptors, TGF-beta1, and TGF-beta type II receptor expression were evaluated using quantitative reverse transcription polymerase chain reaction (Q-RT-PCR). The effect of GM-CSF on DNA synthesis, cell proliferation, expression of GM-CSF, TGF-beta1, and TGF-beta receptor, and their regulation by ovarian steroids was determined by the rate of [(3)H]thymidine incorporation, MTT assay, Q-RT-PCR, and ELISA, respectively. RESULTS: Endometrial carcinomas express significantly higher GM-CSF and GM-CSF alpha and beta receptor mRNA compared with normal postmenopausal endometrium. GM-CSF at various doses had no significant effect on the rate of [(3)H]thymidine incorporation or proliferation of Ishikawa cells, whereas TGF-beta1 inhibited [(3)H]thymidine incorporation. GM-CSF and TGF-beta1 regulate their own expression and the expression of TGF-beta type II receptor, which were both upregulated by 17beta-estradiol and medroxyprogesterone acetate treatment and reversed following cotreatment with their respective receptor antagonists. CONCLUSION: Endometrial carcinoma expresses an elevated level of GM-CSF and GM-CSF receptors. GM-CSF is not a mitogen for the endometrial cancer cell line; however, either alone or through interaction with TGF-beta1, it regulates its own expression and the expression of TGF-beta1 and TGF-beta type II receptor which inhabits endometrial cancer cells. This interaction may represent a regulatory feedback mechanism that could serve to suppress endometrial carcinoma growth.
    [Abstract] [Full Text] [Related] [New Search]