These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vagal afferent activity and body temperature in 3 to 10-day-old and adult rats. Author: Trippenbach T. Journal: Can J Physiol Pharmacol; 2001 Apr; 79(4):303-9. PubMed ID: 11332507. Abstract: This study examined the possible contribution of vagal stretch receptor activity to the increased power of the Hering-Breuer reflex in hyperthermia in rats during the early postnatal period. Experiments were performed on 10 anesthetized (pentobarbital 40 mg/kg, i.p.) 3 to 10-day-old (body weight of 16 +/- 1 g; SE) and, for comparison, 18 adult Sprague-Dawley rats (body weight of 336 +/- 35 g). Animals were tracheostomized and artificially ventilated with oxygen. The left vagus nerve was cut. In adult animals, single receptor fibers or a bundle of a few fibers were recorded using a bipolar stainless-steel electrode under mineral oil. In the young rats, a suction electrode filled with normal saline was used. Positive pressure of either 5 or 10 cmH2O was applied to the trachea when the respirator was turned off. The vagal activity was amplified and monitored on a storage oscilloscope for calculation of the frequency of vagal afferent activity during a given pressure application at different rectal temperatures (T(R); range 28 to 42 degrees C). In total, 30 and 31 sets of vagal activity in the young and adult rats, respectively, were analyzed. In all cases, an increase in tracheal pressure (P(TR)) from 5 to 10 cmH2O increased the frequency of vagal firing. The increase was greater in the adult versus the young animals; at 36 degrees C the increase was 49 +/- 11% and 16 +/- 3% in the adult and young rats, respectively (P < 0.01). In all animals, vagal receptors showed temperature-sensitivity, but less so in the young than in the adult rats (P < 0.0004 and P < 0.003; for P(TR) of 5 and 10 cmH2O, respectively). In addition, the relationship between temperature-sensitivity and T(R) had significant slopes (P < 0.001 for both inflation pressures) in the adults but not in the young rats, indicating that in the latter the temperature-sensitivity of vagal receptors is independent of TR. These results imply that temperature-sensitivity of vagal receptors could have contributed to the increased power of the Hering-Breuer reflex in rats during the early postnatal period in the warmer environment.[Abstract] [Full Text] [Related] [New Search]