These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3-(4-Fluoropiperidin-3-yl)-2-phenylindoles as high affinity, selective, and orally bioavailable h5-HT(2A) receptor antagonists. Author: Rowley M, Hallett DJ, Goodacre S, Moyes C, Crawforth J, Sparey TJ, Patel S, Marwood R, Patel S, Thomas S, Hitzel L, O'Connor D, Szeto N, Castro JL, Hutson PH, MacLeod AM. Journal: J Med Chem; 2001 May 10; 44(10):1603-14. PubMed ID: 11334570. Abstract: The development of very high affinity, selective, and bioavailable h5-HT(2A) receptor antagonists is described. By investigation of the optimal position for the basic nitrogen in a series of 2-phenyl-3-piperidylindoles, it was found that with the basic nitrogen at the 3-position of the piperidine it was not necessary to further substitute the piperidine in order to obtain good binding at h5-HT(2A) receptors. This meant the compounds no longer had high affinity at the IKr potassium channel, an issue with previous series of 2-aryl-3-(4-piperidyl)indoles. Improvements could be made to oral bioavailability in this series by reduction of the pK(a) of the basic nitrogen, by adding a fluorine atom to the piperidine ring, leading to 3-(4-fluoropiperidin-3-yl)-2-phenyl-1H-indole (17). Metabolic studies with this compound identified oxidation at the 6-position of the indole as a major route in vitro and in vivo in rats. Blocking this position with a fluorine atom led to 6-fluoro-3-(4-fluoropiperidin-3-yl)-2-phenyl-1H-indole (22), an antagonist with 0.06 nM affinity for h5-HT(2A) receptors, with bioavailability of 80% and half-life of 12 h in rats.[Abstract] [Full Text] [Related] [New Search]