These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rainfall-induced sediment and pesticide input from orchards into the Lourens River, Western Cape, South Africa: importance of a single event. Author: Schulz R. Journal: Water Res; 2001 Jun; 35(8):1869-76. PubMed ID: 11337831. Abstract: Rainfall-induced runoff transported sediments and pesticides into the Lourens River and its tributaries during a 28.8-mm rainstorm in mid-December 1998. Average 1-h peak levels of current-use insecticides applied to adjacent orchard plots were 1.5 micrograms l-1 azinphos-methyl, 0.2 microgram l-1 chlorpyrifos and 2.9 micrograms l-1 total endosulfan (alpha, beta, S) in the river itself. Respective average 1-h pesticide levels associated with suspended particles were 1247, 924 and 12,082 micrograms kg-1, along with 980 micrograms kg-1 of prothiofos. Total suspended solids increased during runoff from 32 to 520 mg l-1. The contaminated edge-of-field runoff entered the river via the tributaries directly bordering the orchard-growing areas. Increased concentrations of azinphos-methyl and prothiofos associated with suspended sediments were demonstrated to persist for about 3.5 months without any further input in one of the tributaries. This illustrates that the short-term exposure has the potential to result in long-term contamination of surface waters. In terms of chemical load during the 1-h peak discharge period, the single rainfall event caused a loss of 173 g h-1 azinphosmethyl, 55 g h-1 chlorpyrifos, 740 g h-1 total endosulfan (alpha, beta, S) and 41 g h-1 prothiofos. Levels of contamination were extremely high; they exceed the national water quality standards and those established by the US EPA. A comparison with standard toxicity data and 24-h LC50 s for the local amphipod species Paramelita nigroculus, obtained during this study, indicates that the concentrations found in the river may result in acute toxic effects on aquatic invertebrates and fishes. A probability analysis of 10-y rainfall data revealed that the frequency of a similar storm event occurring within the main spraying season is 1.7 y-1.[Abstract] [Full Text] [Related] [New Search]