These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Author: Lee J, Klessig DF, Nürnberger T. Journal: Plant Cell; 2001 May; 13(5):1079-93. PubMed ID: 11340183. Abstract: Harpin from the bean halo-blight pathogen Pseudomonas syringae pv phaseolicola (harpin(Psph)) elicits the hypersensitive response and the accumulation of pathogenesis-related gene transcripts in the nonhost plant tobacco. Here, we report the characterization of a nonproteinaceous binding site for harpin(Psph) in tobacco plasma membranes, which is assumed to mediate the activation of plant defense responses in a receptor-like manner. Binding of 125I-harpin(Psph) to tobacco microsomal membranes (dissociation constant = 425 nM) and protoplasts (dissociation constant = 380 nM) was specific, reversible, and saturable. A close correlation was found between the abilities of harpin(Psph) fragments to elicit the transcript accumulation of the pathogenesis-related tobacco gene HIN1 and to compete for binding of 125I-harpin(Psph) to its binding site. Another elicitor of the hypersensitive response and HIN1 induction in tobacco, the Phytophthora megasperma-derived beta-elicitin beta-megaspermin, failed to bind to the putative harpin(Psph) receptor. In contrast to activation by beta-megaspermin, harpin(Psph)-induced activation of the 48-kD salicylic acid-responsive mitogen-activated protein kinase (MAPK) and HIN1 transcript accumulation were independent of extracellular calcium. Moreover, use of the MAPK kinase inhibitor U0126 revealed that MAPK activity was essential for pathogenesis-related gene expression in harpin(Psph)-treated tobacco cells. Thus, a receptor-mediated MAPK-dependent signaling pathway may mediate the activation of plant defense responses induced by harpin(Psph).[Abstract] [Full Text] [Related] [New Search]