These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries.
    Author: Taylor HJ, Chaytor AT, Edwards DH, Griffith TM.
    Journal: Biochem Biophys Res Commun; 2001 May 11; 283(3):583-9. PubMed ID: 11341764.
    Abstract:
    We have investigated the role of cAMP in nitric oxide (NO)- and prostanoid-independent vascular relaxations evoked by acetylcholine (ACh) in isolated arteries and perfused ear preparations from the rabbit. These EDHF-type responses are shown to be associated with elevated cAMP levels specifically in smooth muscle and are attenuated by blocking adenylyl cyclase or protein kinase A (PKA). Relaxations are amplified by 3-isobutyl-1-methylxanthine, which prevents cAMP hydrolysis, while remaining susceptible to inhibition by the combination of two K(Ca) channel blockers, apamin and charybdotoxin. Analogous endothelium- and cAMP-dependent relaxations were evoked by cyclopiazonic acid (CPA) which stimulates Ca(2+) influx via channels linked to the depletion of Ca(2+) stores. Responses to ACh and CPA were both inhibited by interrupting cell-to-cell coupling via gap junctions with 18alpha-glycyrrhetinic acid and a connexin-specific Gap 27 peptide. The findings suggest that EDHF-type responses are initiated by capacitative Ca(2+) influx into the endothelium and propagated by direct intercellular communication to effect relaxation via cAMP/PKA-dependent phosphorylation events in smooth muscle.
    [Abstract] [Full Text] [Related] [New Search]