These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-affinity binding of NADPH to camel lens zeta-crystallin. Author: Bazzi MD, Rabbani N, Duhaiman AS. Journal: Biochim Biophys Acta; 2001 Jan 12; 1544(1-2):283-8. PubMed ID: 11341937. Abstract: Fluorescence spectrum of camel lens zeta-crystallin, a major protein in the lens of camelids and histicomorph rodents, showed maximum emission at 315 nm. This emission maximum is blue shifted compared to most proteins, including alpha-crystallin, and appeared to be due to tryptophan in highly hydrophobic environment. Interaction of NADPH with zeta-crystallin quenched the protein fluorescence and enhanced the fluorescence of bound NADPH. Analysis of fluorescence quenching suggested high-affinity interaction between NADPH and zeta-crystallin with an apparent Km<0.45 microM. This value is at least an order of magnitude lower than that suggested by activity measurements. Analysis of NADPH fluorescence showed a biphasic curve representing fluorescence of free- and bound-NADPH. The intersection between free- and bound-NADPH closely paralleled the enzyme concentration, suggesting one mole of NADPH was bound per subunit of the enzyme. Phenanthrenequinone (PQ), the substrate of zeta-crystallin, also was able to quench the fluorescence of zeta-crystallin, albeit weaker than NADPH. Quantitative analysis suggested that zeta-crystallin had low affinity for PQ in the absence of NADPH, and PQ binding induced significant conformational changes in zeta-crystallin.[Abstract] [Full Text] [Related] [New Search]