These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol). Author: Chiu GN, Bally MB, Mayer LD. Journal: Biochim Biophys Acta; 2001 Feb 09; 1510(1-2):56-69. PubMed ID: 11342147. Abstract: Incorporation of 5 mol% poly(ethylene glycol)-conjugated lipids (PEG-lipids) has been shown to extend the circulation longevity of neutral liposomes due to steric repulsion of PEG at the membrane surface. The effects of PEG-lipids on protein interactions with biologically reactive membranes were examined using phosphatidylserine (PS) containing liposomes as the model. Incorporating 15 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-PEG 2000 into PS liposomes resulted in circulation lifetimes comparable to that obtained with neutral liposomes containing 5 mol% DSPE-PEG 2000. These results suggested that 15 mol% DSPE-PEG 2000 may be effective in protecting PS liposomes from the high affinity, PS-mediated binding of plasma proteins. This was determined by monitoring the effects of PEG-lipids on calcium-mediated blood coagulation protein interactions with PS liposomes. Prothrombin binding and procoagulant activity of PS liposomes could be inhibited >80% when 15 mol% DSPE-PEG 2000 was used. These results are consistent with PS on membrane surfaces forming transient nucleation sites for protein binding that may result in lateral exclusion of PEG-lipids incorporated at <10 mol%. These nucleation sites may be inaccessible when PEG-lipids are present at elevated levels where they adopt a highly compressed brush conformation. This suggests that liposomes with reactive groups and PEG-lipids may be appropriately designed to impart selectivity to protein interactions with membrane surfaces.[Abstract] [Full Text] [Related] [New Search]