These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The thermotropic phase behavior of cationic lipids: calorimetric, infrared spectroscopic and X-ray diffraction studies of lipid bilayer membranes composed of 1,2-di-O-myristoyl-3-N,N,N-trimethylaminopropane (DM-TAP). Author: Lewis RN, Tristram-Nagle S, Nagle JF, McElhaney RN. Journal: Biochim Biophys Acta; 2001 Feb 09; 1510(1-2):70-82. PubMed ID: 11342148. Abstract: The thermotropic phase behavior of lipid bilayer model membranes composed of the cationic lipid 1,2-di-O-myristoyl-3-N,N,N-trimethylaminopropane (DM-TAP) was examined by differential scanning calorimetry, infrared spectroscopy and X-ray diffraction. Aqueous dispersions of this lipid exhibit a highly energetic endothermic transition at 38.4 degrees C upon heating and two exothermic transitions between 20 and 30 degrees C upon cooling. These transitions are accompanied by enthalpy changes that are considerably greater than normally observed with typical gel/liquid--crystalline phase transitions and have been assigned to interconversions between lamellar crystalline and lamellar liquid--crystalline forms of this lipid. Both infrared spectroscopy and X-ray diffraction indicate that the lamellar crystalline phase is a highly ordered, substantially dehydrated structure in which the hydrocarbon chains are essentially immobilized in a distorted orthorhombic subcell. Upon heating to temperatures near 38.4 degrees C, this structure converts to a liquid-crystalline phase in which there is excessive swelling of the aqueous interlamellar spaces owing to charge repulsion between, and undulations of, the positively charged lipid surfaces. The polar/apolar interfaces of liquid--crystalline DM-TAP bilayers are not as well hydrated as those formed by other classes of phospho- and glycolipids. Such differences are attributed to the relatively small size of the polar headgroup and its limited capacity for interaction with moieties in the bilayer polar/apolar interface.[Abstract] [Full Text] [Related] [New Search]