These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic contributions to superior shoulder stability. Author: Halder AM, Zhao KD, Odriscoll SW, Morrey BF, An KN. Journal: J Orthop Res; 2001 Mar; 19(2):206-12. PubMed ID: 11347692. Abstract: It has been suggested that superior decentralization of the humeral head is a mechanical factor in the etiology of degenerative rotator cuff tears. This superior decentralization may be caused by muscular imbalance. The objective of this study was to investigate the contribution of individual shoulder muscles to superior stability of the glenohumeral joint. In 10 fresh frozen cadaver shoulders the tendons of the rotator cuff, teres major, latissimus, pectoralis major, deltoid and biceps were prepared. The shoulders were tested in a shoulder-loading device in 0 degrees, 30degrees, 60 degrees and 90 degrees of glenohumeral abduction. A constant superior force of 20 N was applied to the humerus. Tensile loads were applied sequentially to the tendons in proportion to their cross-sectional areas and translations of the humeral head relative to the glenoid were recorded with a 3Space Fastrak system. Depression of the humeral head was most effectively achieved by the latissimus (5.6 +/- 2.2 mm) and the teres major (5.1 +/- 2.0 mm). Further studies should elucidate their possible in vivo role in the frontal plane force couple to counter balance the deltoid. The infraspinatus (4.6 +/- 2.0 mm) and subscapularis (4.7 +/- 1.9 mm) showed similar effects while the supraspinatus (2.0 +/- 1.4 mm) was less effective in depression. Therefore, the infraspinatus and subscapularis should be surgically repaired whenever possible. The supraspinatus may be of less importance for superior stability than previously assumed.[Abstract] [Full Text] [Related] [New Search]