These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuroplasticity induced by tooth pulp stimulation in trigeminal subnucleus oralis involves NMDA receptor mechanisms. Author: Park SJ, Chiang CY, Hu JW, Sessle BJ. Journal: J Neurophysiol; 2001 May; 85(5):1836-46. PubMed ID: 11353000. Abstract: We have recently demonstrated that application of the mustard oil (MO), a small-fiber excitant and inflammatory irritant, to the rat maxillary molar tooth pulp induces significant increases in jaw muscle electromyographic (EMG) activity and neuroplastic changes in trigeminal (V) subnucleus caudalis. Since subnucleus oralis (Vo) as well as caudalis receives projections from molar pulp afferents and is also an integral brain stem relay of afferent input from orofacial structures, we tested whether MO application to the exposed pulp induces neuroplastic changes in oralis neurons and whether microinjection of MK-801, a noncompetitive NMDA antagonist, into the Vo influences the pulp/MO-induced neuroplastic changes in chloralose/urethan-anesthetized rats. Single neuronal activity was recorded in Vo, and neurons classified as low-threshold mechanoreceptive (LTM), wide dynamic range (WDR), nociceptive-specific (NS), deep (D), or skin/mucosa and deep (S + D). The spontaneous activity, mechanoreceptive field (RF) size, mechanical threshold, and response to suprathreshold mechanical stimuli applied to the neuronal RF were assessed prior to and throughout a 40- to 60-min period after MO application to the maxillary molar pulp. In animals pretreated with saline microinjection (0.3 microl) into the Vo, MO application to the pulp produced a significant increase in spontaneous activity, expansion of the pinch or deep RF, decrease in the mechanical threshold, and increase in response to suprathreshold mechanical stimuli of the nociceptive (WDR, NS, and S + D) neurons except for those nociceptive neurons having their RF only in the intraoral region. The pulpal application of MO did not produce any significant neuroplastic changes in LTM neurons. Furthermore, in animals pretreated with MK-801 microinjection (3 microg/0.3 microl) into the Vo, MO application to the pulp did not produce any significant changes in the RF and response properties of nociceptive neurons. In other animals pretreated with saline (0.3 microl) or MK-801 (3 microg/0.3 microl) microinjected into the Vo, mineral oil application to the pulp did not produce any significant changes in RF and response properties of nociceptive neurons. These findings indicate that the application of MO to the tooth pulp can induce significant neuroplastic changes in oralis nociceptive neurons and that central NMDA receptor mechanisms may be involved in these neuroplastic changes.[Abstract] [Full Text] [Related] [New Search]