These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nanostructured dna-protein aggregates consisting of covalent oligonucleotide-streptavidin conjugates. Author: Niemeyer CM, Adler M, Gao S, Chi L. Journal: Bioconjug Chem; 2001; 12(3):364-71. PubMed ID: 11353533. Abstract: Covalent conjugates consisting of streptavidin and a 24-mer single-stranded DNA oligonucleotide have been oligomerized by cross-linking with a 5',5'-bis-biotinylated 169-base-pair double-stranded DNA (dsDNA) fragment. The oligomeric conjugates formed have been analyzed by nondenaturing gel electrophoresis and scanning-force microscopy (SFM). The comparison of analogous oligomers, prepared from native STV and the bis-biotinylated dsDNA fragment, revealed that the covalent STV-oligonucleotide hybrid conjugates self-assemble to generate oligomeric aggregates of significant smaller size, containing on average only about 2.5 times less dsDNA fragments per aggregate. Likely, this is a consequence of electrostatic or steric repulsion between the dsDNA and the single-stranded oligomer covalently attached to the hybrid, as indicated from control experiments. Nevertheless, the single-stranded oligonucleotide moiety within the oligomeric conjugates can be used as a selective molecular handle for further functionalization and manipulation. For instance, it was used for specific DNA-directed immobilization at a surface, previously functionalized with complementary capture oligonucleotides. Moreover, we demonstrate that macromolecules, such as STV and antibody molecules, which are tagged with the complementary oligonucleotide, specifically bind to the supramolecular DNA-STV oligomeric conjugates. This leads to a novel class of functional DNA-protein conjugates, suitable, for instance, as reagents in immuno-PCR or as building blocks in molecular nanotechnology.[Abstract] [Full Text] [Related] [New Search]