These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EET homologs potently dilate coronary microvessels and activate BK(Ca) channels. Author: Zhang Y, Oltman CL, Lu T, Lee HC, Dellsperger KC, VanRollins M. Journal: Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2430-40. PubMed ID: 11356595. Abstract: Epoxyeicosatrienoic acids (EETs) are released from endothelial cells and potently dilate small arteries by hyperpolarizing vascular myocytes. In the present study, we investigated the structural specificity of EETs in dilating canine and porcine coronary microvessels (50-140 microm ID) and activating large-conductance Ca2+-activated K+ (BK(Ca)) channels. The potencies and efficacies of EET regioisomers and enantiomers were compared with those of two EET homologs: epoxyeicosaquatraenoic acids (EEQs), which are made from eicosapentaenoic acid by the same cytochrome P-450 epoxygenase that generates EETs from arachidonic acid, and epoxydocosatetraenoic acids (EDTs), which are EETs that are two carbons longer. With EC50 values of 3-120 pM but without regio- or stereoselectivity, EETs potently dilated canine and porcine microvessels. Surprisingly, the EEQs and EDTs had comparable potencies and efficacies in dilating microvessels. Moreover, 50 nM 13,14-EDT activated the BK(Ca) channels with the same efficacy as either 11,12-EET enantiomer at 50 nM. We conclude that coronary microvessels and BK(Ca) channels possess low structural specificity for EETs and suggest that EEQs and EDTs may thereby also be endothelium-derived hyperpolarizing factors.[Abstract] [Full Text] [Related] [New Search]