These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rat glutathione S-transferase M4-4: an isoenzyme with unique structural features including a redox-reactive cysteine-115 residue that forms mixed disulphides with glutathione. Author: Cheng H, Tchaikovskaya T, Tu YS, Chapman J, Qian B, Ching WM, Tien M, Rowe JD, Patskovsky YV, Listowsky I, Tu CP. Journal: Biochem J; 2001 Jun 01; 356(Pt 2):403-14. PubMed ID: 11368767. Abstract: Although the existence of the rat glutathione S-transferase (GST) M4 (rGSTM4) gene has been known for some time, the corresponding protein has not as yet been purified from tissue. A recombinant rGSTM4-4 was thus expressed in Escherichia coli from a chemically synthesized rGSTM4 gene. The catalytic efficiency (k(cat)/K(m)) of rGSTM4-4 for the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction was 50-180-fold less than that of the well-characterized homologous rGSTM1-1, and the pH optimum for the same reaction was 8.5 for rGSTM4-4 as opposed to 6.5 for rGSTM1-1. Molecular-modelling studies predict that key substitutions in the helix alpha4 region of rGSTM4-4 account for this pK(a) difference. A notable structural feature of rGSTM4-4 is the Cys-115 residue in place of the Tyr-115 of other Mu-class GSTs. The thiol group of Cys-115 is redox-reactive and readily forms a mixed disulphide even with GSH; the S-glutathiolated form of the enzyme is catalytically active. A mutated rGSTM4-4 (C115Y) had 6-10-fold greater catalytic efficiency than the wild-type rGSTM4-4. Trp-45, a conserved residue among Mu-class GSTs, is essential in rGSTM4-4 for both enzyme activity and binding to glutathione affinity matrices. Antibodies directed against either the unique C-terminal undecapeptide or tridecapeptide of rGSTM4 reacted with rat and mouse liver GSTs to reveal an orthologous mouse GSTM4-4 present at low basal levels but which is inducible in mouse liver. This subclass of rodent Mu GSTs with redox-active Cys-115 residues could have specialized physiological functions in response to oxidative stress.[Abstract] [Full Text] [Related] [New Search]