These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Taxon-specific zeta -crystallin in Japanese tree frog (Hyla japonica) lens. Author: Fujii Y, Kimoto H, Ishikawa K, Watanabe K, Yokota Y, Nakai N, Taketo A. Journal: J Biol Chem; 2001 Jul 27; 276(30):28134-9. PubMed ID: 11371565. Abstract: The present study demonstrated that the 38-kDa protein, instead of rho-crystallin (36 kDa), is expressed taxon specifically in the lens of Japanese tree frog (Hyla japonica). The 38-kDa protein was distinguished from rho-crystallin expressed in the lenses of bullfrog (Rana catesbeiana) and European common frog (Rana temporaria) immunochemically. Although the N terminus of the 38-kDa protein was blocked, the analyses of partial amino acid sequences showed that the protein was zeta-crystallin. Analysis of cDNA sequence encoding zeta-crystallin of the tree frog lens demonstrated that the deduced protein consisted of 329 amino acids including initial methionine and having 62.2 and 62.9% identity with zeta-crystallin of camel and guinea pig lenses, respectively. The molecular mass of the deduced structure was calculated to be 35,564 Da. zeta-Crystallin of the tree frog lens exhibited the intrinsic enzymatic activity of quinone reductase (EC, NADPH:quinone oxidoreductase). The crystallin specifically catalyzed the reduction of 9,10-phenanthrenequinone (Km, 42 microm) using NADPH (Km, 60 microm) as a cofactor. The enzymatic activity was inhibited by dicumarol, anti-coagulant drug, with IC50 of 4 microm. On gel filtration chromatography, the crystallin was recovered as 150-kDa molecular mass complex, indicating that the crystallin was homotetramer consisting of 38-kDa subunits. The crystallin gene was expressed specifically in the lens. These results show that taxon-specific crystallins such as zeta- and rho-crystallins may be available for the biochemical discrimination of Hyla- and Rana groups among frogs.[Abstract] [Full Text] [Related] [New Search]