These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tubulin polyglycylation: a morphogenetic marker in ciliates.
    Author: Iftode F, Clérot JC, Levilliers N, Bré MH.
    Journal: Biol Cell; 2000 Dec; 92(8-9):615-28. PubMed ID: 11374440.
    Abstract:
    The occurrence of the tubulin post-translational modification, polyglycylation, in stable microtubular structures was investigated during morphogenesis in two ciliates, Paramecium and Frontonia atra, belonging to the Epiplasmata group. This analysis was carried out by means of immunofluorescence and post-embedding immunoelectron microscopy using two monoclonal antibodies, TAP 952 and AXO 49, respectively recognizing mono- and polyglycylated sites in alpha- and beta-tubulin. In the course of cell division, the TAP 952 epitope is detected in all microtubular structures including the newly assembled ones, such as cortical and oral basal bodies and cilia. In contrast, the AXO 49 epitope is only present in 'old' microtubular structures such as parental cortical and oral basal bodies and cilia. Our observations show that, in ciliates: 1) this tubulin post-translational modification takes place early in the course of morphogenesis; and 2) the lengthening of the polyglycine chains occurs after a great delay following addition of the first glycine residues on the tubulin glycylation sites, and following microtubule assembly. Thus, a sequential mechanism of polyglycylation is shown to take place in the tubulin molecule and during morphogenesis in Paramecium and Frontonia atra. Accordingly, polyglycylation, through a time-dependent polyglycine chain elongation process, appears to be a morphogenetic marker in ciliates.
    [Abstract] [Full Text] [Related] [New Search]