These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Author: Reddy JK, Hashimoto T. Journal: Annu Rev Nutr; 2001; 21():193-230. PubMed ID: 11375435. Abstract: beta-Oxidation occurs in both mitochondria and peroxisomes. Mitochondria catalyze the beta-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanoic acids, and in the process they generate H2O2. Long-chain and very-long-chain fatty acids (VLCFAs) are also metabolized by the cytochrome P450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. The peroxisomal beta-oxidation system consists of (a) a classical peroxisome proliferator-inducible pathway capable of catalyzing straight-chain acyl-CoAs by fatty acyl-CoA oxidase, L-bifunctional protein, and thiolase, and (b) a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs by branched-chain acyl-CoA oxidase (pristanoyl-CoA oxidase/trihydroxycoprostanoyl-CoA oxidase), D-bifunctional protein, and sterol carrier protein (SCP)x. The genes encoding the classical beta-oxidation pathway in liver are transcriptionally regulated by peroxisome proliferator-activated receptor alpha (PPAR alpha). Evidence derived from mice deficient in PPAR alpha, peroxisomal fatty acyl-CoA oxidase, and some of the other enzymes of the two peroxisomal beta-oxidation pathways points to the critical importance of PPAR alpha and of the classical peroxisomal fatty acyl-CoA oxidase in energy metabolism, and in the development of hepatic steatosis, steatohepatitis, and liver cancer.[Abstract] [Full Text] [Related] [New Search]