These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose-regulated pulsatile insulin release from mouse islets via the K(ATP) channel-independent pathway.
    Author: Westerlund J, Ortsäter H, Palm F, Sundsten T, Bergsten P.
    Journal: Eur J Endocrinol; 2001 Jun; 144(6):667-75. PubMed ID: 11375802.
    Abstract:
    OBJECTIVE: Regulation of insulin release by glucose involves dual pathways, including or not inhibition of ATP-sensitive K(+) channels (K(ATP) channels). Whereas the K(ATP) channel-dependent pathway produces pulsatile release of insulin it is not clear whether the independent pathway also generates such kinetics. DESIGN AND METHODS: To clarify this matter, insulin secretion and cytoplasmic Ca(2+) ([Ca(2+)](i)) were studied in perifused pancreatic islets from ob/ob mice. Insulin release was measured by ELISA technique and [Ca(2+)](i) by dual-wavelength fluorometry. RESULTS: Insulin secretion was pulsatile (0.2--0.3/min) at 3 mmol/l glucose when [Ca(2+)](i) was low and stable. Stimulation with 11 mmol/l of the sugar increased the amplitude of the insulin pulses with maintained frequency and induced oscillations in [Ca(2+)](i). Permanent opening of the K(ATP) channels with diazoxide inhibited glucose-stimulated insulin secretion back to basal levels with maintained pulsatility despite stable and basal [Ca(2+)](i) levels. Increase of the K(+) concentration to 30.9 mmol/l in the continued presence of diazoxide and 11 mmol/l glucose restored the secretory rate with maintained pulsatility and caused stable elevation in [Ca(2+)](i). Simultaneous introduction of diazoxide and elevation of K(+) augmented average insulin release almost 30-fold in 3 mmol/l glucose with maintained pulse frequency. Subsequent elevation of the glucose concentration to 11 and 20 mmol/l increased the release levels. After prolonged exposure to diazoxide, elevated K(+) and 20 mmol/l glucose, the pulse frequency decreased significantly. CONCLUSIONS: Not only glucose signaling via the K(ATP) channel-dependent but also that via the independent pathway generates amplitude-modulated pulsatile release of insulin from isolated islets.
    [Abstract] [Full Text] [Related] [New Search]