These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased basal contractility of cardiomyocytes overexpressing protein kinase C epsilon and blunted positive inotropic response to endothelin-1. Author: Baudet S, Weisser J, Janssen AP, Beulich K, Bieligk U, Pieske B, Noireaud J, Janssen PM, Hasenfuss G, Prestle J. Journal: Cardiovasc Res; 2001 Jun; 50(3):486-94. PubMed ID: 11376624. Abstract: OBJECTIVE: Protein kinase C (PKC) is thought to be involved in the regulation of the mammalian cardiac excitation-contraction coupling process by vasoactive peptides like endothelin-1 (ET-1). However, the demonstration of a causal link between activation of specific PKC isoforms and the increase in contractility mediated by ET-1 is still inferential. METHODS: By means of adenovirus-mediated gene transfer, we specifically overexpressed PKC epsilon in cultured adult rabbit ventricular myocytes (Ad-PKC epsilon). Myocyte shortening and [Ca2+]i transients under basal and ET-1-stimulated conditions were measured in Ad-PKC epsilon and Ad-LacZ control transfected cells. RESULTS: Infection with Ad-PKC epsilon resulted in a strong, virus dose-dependent increase in PKC epsilon protein levels, whereas protein expression of other PKC isoforms remained unchanged. Using a multiplicity of infection of 100 plaque-forming units/myocyte, basal and cofactor-dependent PKC epsilon kinase activity was increased 28- and 90-fold, respectively, when compared to control. Myocyte basal fractional shortening and [Ca2+]i transient amplitude were both increased by 21% (P < 0.05 each) in Ad-PKC epsilon transfected myocytes when compared to Ad-LacZ transfected control myocytes. The positive inotropic effect of ET-1 in control myocytes was markedly blunted in PKC epsilon-overexpressing myocytes. CONCLUSION: Specific overexpression of PKC epsilon in rabbit ventricular myocytes increases basal myocyte contractility and [Ca2+]i transients, and modifies their responsiveness to ET-1.[Abstract] [Full Text] [Related] [New Search]