These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Author: Black CG, Wu T, Wang L, Hibbs AR, Coppel RL. Journal: Mol Biochem Parasitol; 2001 May; 114(2):217-26. PubMed ID: 11378201. Abstract: By motif searching of the unfinished sequences in the Malaria Genome Sequencing Project databases we have identified a novel EGF-like domain-containing protein of Plasmodium falciparum. The sequence lies within a single open reading frame of 1791 bp and is predicted to encode a polypeptide of 597 amino acids. There are hydrophobic regions at the extreme N- and C-termini, which could represent secretory signal peptide and GPI attachment sites, respectively. Similar to MSP1, there are two EGF-like domains located near the C-terminus. RT-PCR analysis of the novel gene shows that it is transcribed in asexual stages of the malaria parasite. We have expressed portions of the protein as recombinant GST fusions in Escherichia coli and raised antisera in rabbits. Antibodies to the EGF-like domains of the novel protein are highly specific and do not cross-react with the EGF-like domains of MSP1, MSP4 or MSP5 expressed as GST fusion proteins. Antiserum raised to the most C-terminal region of the protein reacts with four bands of 98, 50, 25 and 19 kDa in P. falciparum parasite lysates whereas antisera to the N-terminal fusion proteins recognise the 98 and 50 kDa bands, suggesting that the novel protein may undergo processing in a similar way to MSP1. Immunoblot analysis of stage-specific parasite samples reveals that the protein is present throughout the parasite asexual life cycle and in isolated merozoites, with the smaller fragments present in ring stage parasites. The protein partitions in the detergent-enriched phase after Triton X-114 fractionation and is localized to the surfaces of trophozoites, schizonts and free merozoites by indirect immunofluorescence. Antisera to the C-terminus stain the surface of rings, whereas antisera to the N-terminus do not, suggesting that a fragment of the protein is carried into the developing ring stage parasite. Based on the accepted nomenclature in the field we designate this protein MSP8. We have shown that the MSP8 fusion proteins are in a conformation that can be recognised by human immune sera and that there is very limited diversity in the MSP8 gene sequences from various P. falciparum laboratory isolates. MSP8 shows significant similarity to the recently reported sequence of the protective P. yoelii merozoite surface protein pypAg-2 [Burns JM, Belk CC, Dunn PD. Infect Immun 2000;68:6189-95.] suggesting that the two proteins are homologues. Taken together, these findings suggest that MSP8/pypAg-2 may play an important role in the process of red cell invasion and is a potential malaria vaccine candidate.[Abstract] [Full Text] [Related] [New Search]