These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Algae-removal performance of a fluidized-bed biofilm reactor system for lake water treatment.
    Author: Tanaka T, Tsuzuki K, Nishijima N, Takagi T.
    Journal: Water Sci Technol; 2001; 43(1):277-83. PubMed ID: 11379102.
    Abstract:
    The algae removal efficiency of a pilot plant--based on a fluidized-bed biofilm reactor system for treating--was investigated. This system does not require back-washing because the fluidized-bed suffers no clogging. Moreover, the system uses dissolved oxygen in the influent water for aerobic biological treatment without the need for additional aeration equipment. This, it is an easy-maintenance, low-energy system for purifying eutrophic lake water. The system was operated continuously at a flow rate of 1500 m3/d for nine months at Tsuchiura Port in Lake Kasumigaura. And concentrations of chlorophyll-a and dissolved oxygen in both the influent and effluent water were continuously monitored. In summer (August to September) when water bloom occurred, the average efficiency of chlorophyll-a removal was 64% at an average influent chlorophyll-a concentration of 137.8 micrograms/L. Over the entire experimental period of nine months, the average daily amount of removed chlorophyll-a was 40.3 g/d at an average influent chlorophyll-a concentration of 89.5 micrograms/L. By analyzing the relationship between the amount of removed chlorophyll-a and the consumption of dissolved oxygen, it was estimated that almost all of the algae trapped in the reactor was biologically degraded.
    [Abstract] [Full Text] [Related] [New Search]