These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electroporation-mediated PDGF receptor-IgG chimera gene transfer ameliorates experimental glomerulonephritis.
    Author: Nakamura H, Isaka Y, Tsujie M, Akagi Y, Sudo T, Ohno N, Imai E, Hori M.
    Journal: Kidney Int; 2001 Jun; 59(6):2134-45. PubMed ID: 11380815.
    Abstract:
    BACKGROUND: Mesangial cell proliferation and phenotypic alteration occur in an early phase of glomerular injury and precede increased extracellular matrix accumulation. A critical growth factor responsible for mesangial proliferation is platelet-derived growth factor (PDGF), which has proved to be a potent mitogen. METHODS: We generated a chimeric cDNA encoding an extracellular domain of the beta-PDGF receptor fused with IgG-Fc, termed PDGFR/Fc, and examined the feasibility of gene therapy targeting PDGF using PDGFR/Fc. RESULTS: Chimeric PDGFR/Fc molecule completely inhibited the tyrosine phosphorylation of beta-PDGF receptors and cellular proliferation induced by PDGF in vitro. We then introduced the PDGFR/Fc expression vector into the muscle of anti-Thy-1 model of glomerulonephritic rats by electroporation. The plasma concentration of chimeric PDGFR/Fc levels was 244.4 +/- 89.8 ng/mL four days after transfection. On day 5, PDGFR/Fc gene transfer significantly reduced the number of PCNA-positive cells and glomerular cell numbers by 59.6 and 23.2%, respectively. Northern blot analysis demonstrated that glomerular mRNA levels of alpha-smooth muscle action, transforming growth factor-beta 1, and type I collagen were also suppressed on days 5 and 7 by the PDGFR/Fc transfection. There was a significant reduction in the matrix score of the transfected nephritic rats (2.91 +/- 0.75 and 2.06 +/- 0.95; disease control group vs. treated group, P < 0.001). CONCLUSION: These results suggest that gene therapy by the manipulation of PDGF action using electroporation-mediated PDGFR/Fc gene transfer to the skeletal muscle might be a useful treatment for mesangioproliferative glomerulonephritis.
    [Abstract] [Full Text] [Related] [New Search]