These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 4D maximum a posteriori reconstruction in dynamic SPECT using a compartmental model-based prior. Author: Kadrmas DJ, Gullberg GT. Journal: Phys Med Biol; 2001 May; 46(5):1553-74. PubMed ID: 11384070. Abstract: A 4D ordered-subsets maximum a posteriori (OSMAP) algorithm for dynamic SPECT is described which uses a temporal prior that constrains each voxel's behaviour in time to conform to a compartmental model. No a priori limitations on kinetic parameters are applied; rather, the parameter estimates evolve as the algorithm iterates to a solution. The estimated parameters and time-activity curves are used within the reconstruction algorithm to model changes in the activity distribution as the camera rotates, avoiding artefacts due to inconsistencies of data between projection views. This potentially allows for fewer, longer-duration scans to be used and may have implications for noise reduction. The algorithm was evaluated qualitatively using dynamic 99mTc-teboroxime SPECT scans in two patients, and quantitatively using a series of simulated phantom experiments. The OSMAP algorithm resulted in images with better myocardial uniformity and definition, gave time-activity curves with reduced noise variations, and provided wash-in parameter estimates with better accuracy and lower statistical uncertainty than those obtained from conventional ordered-subsets expectation-maximization (OSEM) processing followed by compartmental modelling. The new algorithm effectively removed the bias in k21 estimates due to inconsistent projections for sampling schedules as slow as 60 s per timeframe, but no improvement in wash-out parameter estimates was observed in this work. The proposed dynamic OSMAP algorithm provides a flexible framework which may benefit a variety of dynamic tomographic imaging applications.[Abstract] [Full Text] [Related] [New Search]