These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro abzyme evolution to optimize antibody recognition for catalysis.
    Author: Takahashi N, Kakinuma H, Liu L, Nishi Y, Fujii I.
    Journal: Nat Biotechnol; 2001 Jun; 19(6):563-7. PubMed ID: 11385462.
    Abstract:
    Enzymes have evolved their ability to use binding energies for catalysis by increasing the affinity for the transition state of a reaction and decreasing the affinity for the ground state. To evolve abzymes toward higher catalytic activity, we have reconstructed an enzyme-evolutionary process in vitro. Thus, a phage-displayed combinatorial library from a hydrolytic abzyme, 6D9, generated by the conventional in vivo method with immunization of the transition-state analog (TSA), was screened against a newly devised TSA to optimize the differential affinity for the transition state relative to the ground state. The library format successfully afforded evolved variants with 6- to 20-fold increases in activity (kcat) as compared with 6D9. Structural analysis revealed an advantage of the in vitro evolution over the in vivo evolution: an induced catalytic residue in the evolved abzyme arises from double mutations in one codon, which rarely occur in somatic hypermutation in the immune response.
    [Abstract] [Full Text] [Related] [New Search]