These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. Author: Hilairet S, Foord SM, Marshall FH, Bouvier M. Journal: J Biol Chem; 2001 Aug 03; 276(31):29575-81. PubMed ID: 11387328. Abstract: The receptor activity-modifying proteins (RAMPs) and the calcitonin receptor-like receptor (CRLR) are both required to generate adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors. A mature, fully glycosylated, form of CRLR was associated with (125)I-CGRP binding, upon co-expression of RAMP1 and CRLR. In contrast, RAMP2 and -3 promoted the expression of smaller, core-glycosylated, CRLR forms, which were linked to AM receptor pharmacology. Since core glycosylation is classically a trademark of immature proteins, we tested the hypothesis that the core-glycosylated CRLR forms the AM receptor. Although significant amounts of core-glycosylated CRLR were produced upon co-expression with RAMP2 or -3, cross-linking experiments revealed that (125)I-AM only bound to the fully glycosylated forms. Similarly, (125)I-CGRP selectively recognized the mature CRLR species upon co-expression with RAMP1, indicating that the glycosylation does not determine ligand-binding selectivity. Our results also show that the three RAMPs lie close to the peptide binding pocket within the CRLR-RAMP heterodimers, since (125)I-AM and (125)I-CGRP were incorporated in RAMP2, -3, and -1, respectively. Cross-linking also stabilized the peptide-CRLR-RAMP ternary complexes, with the expected ligand selectivity, indicating that the fully processed heterodimers represent the functional receptors. Overall, the data indicate that direct protein-protein interactions dictate the pharmacological properties of the CRLR-RAMP complexes.[Abstract] [Full Text] [Related] [New Search]