These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of amylases from different origins by albumins from the wheat kernel. Author: Silano V, Furia M, Gianfreda L, Macri A, Palescandolo R, Rab A, Scardi V, Stella E, Valfre F. Journal: Biochim Biophys Acta; 1975 May 23; 391(1):170-8. PubMed ID: 1138913. Abstract: The amylase activity of water extracts from 18 insect species, from 23 marine species and from 17 different species of birds and mammals was determined quantitatively. The inhibition of amylase in these extracts by three albumin fractions from the mature wheat kernel, which had been separated according to their molecular weights (60 000, 24 000 and 12 500 D), was determined as well. The inhibition activity of the three albumin fractions toward amylases extracted from a number of cereal species or from immature and germinating wheat kernel was also tested. The extracts from insects that are destructive of wheat grain and stored wheat products showed much higher amylase activities as compared to the other insect species that do not attack wheat and wheat products. On the basis of the effectiveness with which the three albumin fractions inhibit their activities, the amylase preparations tested were divided into susceptible, partially susceptible and resistent. Susceptible amylases, inhibited by any of the three albumin fractions, were found mainly in insects that attack wheat and in marine species. Partially susceptible amylases, inhibited by only one or two of the three albumin fractions, were present in a few avain and mammalian species including man. Resistent amylases were largely distributed in cereal, avian and mammalian species as well as in insect species that do not usually attack wheat grain or wheat flour products. At no stage of development, wheat alpha-amylase was inhibited by the albumin fractions from the mature kernel. The 12 500 dalton albumin fraction was the most effective in inhibiting insect amylases, but it was inactive toward avian and mammalian amylases. The 24 000 dalton albumin fraction was the most effective in inhibiting amylases from marine avian and mammalian species and inhibited as much as 33 amylases over 66 different amylases tested. It is suggested that protein inhibitors of amylase contributed to natural selection of polyploid wheats by giving some insect resistence to such wheats, even though some insect species were able to overcome this biochemical defense toa large degree by producing higher amylase activities.[Abstract] [Full Text] [Related] [New Search]