These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of isotope dilution cold vapor inductively coupled plasma mass spectrometry and its application to the certification of mercury in NIST standard reference materials. Author: Christopher SJ, Long SE, Rearick MS, Fassett JD. Journal: Anal Chem; 2001 May 15; 73(10):2190-9. PubMed ID: 11393840. Abstract: An isotope dilution cold vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) method featuring gaseous introduction of mercury via tin chloride reduction has been developed and applied to the quantification and certification of mercury in various NIST standard reference materials: SRM 966 Toxic Metals in Bovine Blood (30 ng x mL(-1)); SRM 1641d Mercury in Water (1.6 microg x mL(-1)); and SRM 1946 Lake Superior Fish Tissue (436 ng x g(-1)). Complementary mercury data were generated for SRMs and NIST quality control standards using cold vapor atomic absorption spectroscopy (CVAAS). Certification results for the determination of mercury in SRM 1641d using two independent methods (ID-CV-ICPMS and CVAAS) showed a degree of agreement of 0.3% between the methods. Gaseous introduction of mercury into the ICPMS resulted in a single isotope sensitivity of 2 x 10(6) counts x s(-1)/ng x g(-1) for 201Hg and significantly reduced the memory and washout effects traditionally encountered in solution nebulization ICPMS. Figures of merit for isotope ratio accuracy and precision were evaluated at dwell times of 10, 20, 40, 80, and 160 ms using SRM 3133 Mercury Spectrometric Solution. The optimum dwell time of 80 ms yielded a measured 201Hg/202Hg isotope ratio within 0.13% of the theoretical natural value and a measurement precision of 0.34%, on the basis of three replicate injections of SRM 3133.[Abstract] [Full Text] [Related] [New Search]