These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Speciation and preconcentration of vanadium(V) and vanadium(IV) in water samples by flow injection-inductively coupled plasma optical emission spectrometry and ultrasonic nebulization. Author: Wuilloud RG, Wuilloud JC, Olsina RA, Martinez LD. Journal: Analyst; 2001 May; 126(5):715-9. PubMed ID: 11394321. Abstract: An on-line separation, preconcentration and determination system for vanadium(IV) and vanadium(V) comprising inductively coupled plasma optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) method with an ultrasonic nebulization (USN) system was studied. The vanadium species were retained on an Amberlite XAD-7 resin as a vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (V-5-Br-PADAP) complex at pH 3.7. Enhanced selectivity was obtained with the combined use of the formation on-line of the complexes and 1,2-cyclohexanediaminetetraacetic acid (CDTA) as masking agent. The vanadium complexes were removed from the microcolumn with 25% v/v nitric acid. A sensitivity enhancement factor of 225 was obtained with respect to ICP-OES using pneumatic nebulization (15-fold for USN and 15-fold for the microcolumn). The detection limit for the preconcentration of 10 mL of aqueous solution was 19 ng L-1. The precision for 10 replicate determinations at the 5 micrograms L-1 V level was 2.3% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the separation and preconcentration system for vanadium species was linear with a correlation coefficient of 0.9992 at levels from near the detection limits up to at least 100 micrograms L-1. The method was successfully applied to the speciation of vanadium in river water samples.[Abstract] [Full Text] [Related] [New Search]