These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Author: Territo PR, French SA, Balaban RS.
    Journal: Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984.
    Abstract:
    During increases in cardiac work there are net increases in cytosolic [Ca(2+)] and ATP hydrolysis by myofiliments and ion transport ATPases. However, it is still unclear what role Ca(2+)or the ATP hydrolysis products, ADP and Pi, have on the regulation of mitochondrial ATP production. In this study, work jumps were simulated by simultaneous additions of Ca(2+) and ATPase to porcine heart mitochondria. The net effects on the mitochondrial ATP production were monitored by simultaneously monitoring respiration (mVo2), [NADH], [ADP] and membrane potential (deltapsi) at 37 degrees C. Addition of exogenous ATPase (300 mlU.ml(-1))]ATP (3.4 mM) was used to generate a 'resting' background production of ADP. This resting metabolic rate was 200% higher than the quiescent rate while [NADH] and deltapsi were reduced. Subsequent ATPase additions (1.3IU.ml(-)) were made with varying amounts of Ca(2+)(0 to 535 nM) to simulate step increases in cardiac work. Ca(2+) additions increased mVo2 and depolarized deltapsi, and were consistent with an activation of Fo/F1)ATPase. In contrast, Ca(2+) reduced the [NADH] response to the ATPase addition, consistent with Ca(2+)-sensitive dehydrogenase activity (CaDH). The calculated free ADP response to ATPase decreased \2-fold in the presence of Ca(2+). The addition of 172nM free Ca(2+)] ATPase increased mVo2 by 300% (P<0.05, n=8) while deltapsi decreased by 14.9+/-0.1 mV without changes in [NADH] (P > or =0.05, n=8), consistent with working heart preparations. The addition of Ca(2+) and ATPase combined increased the mitochondrial ATP production rate with changes in deltapsi, NADH and [ADP], consistent with an activation of CaDH and F o /F(1)ATPase activity. These balancing effects of ATPase activity and [Ca(2+)] may explain several aspects of metabolic regulation in the heart during work transitions in vivo.
    [Abstract] [Full Text] [Related] [New Search]