These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles. Author: Kelty JD, Lee RE. Journal: J Exp Biol; 2001 May; 204(Pt 9):1659-66. PubMed ID: 11398755. Abstract: In contrast to most studies of rapid cold-hardening, in which abrupt transfers to low temperatures are used to induce an acclimatory response, the primary objectives of this study were to determine (i) whether rapid cold-hardening was induced during the cooling phase of an ecologically based thermoperiod, (ii) whether the protection afforded was lost during warming or contributed to increased cold-tolerance during subsequent cycles and (iii) whether the major thermally inducible stress protein (Hsp70) or carbohydrate cryoprotectants contributed to the protection afforded by rapid cold-hardening. During the cooling phase of a single ecologically based thermoperiod, the tolerance of Drosophila melanogaster to 1 h at -7 degrees C increased from 5 +/- 5% survival to 62.5 +/- 7.3% (means +/- S.E.M., N=40-60), while their critical thermal minima (CTmin) decreased by 1.9 degrees C. Cold hardiness increased with the number of thermoperiods to which flies were exposed; i.e. flies exposed to six thermoperiods were more cold-tolerant than those exposed to two. Endogenous levels of Hsp70 and carbohydrate cryoprotectants were unchanged in rapidly cold-hardened adults compared with controls held at a constant 23 degrees C. In nature, rapid cold-hardening probably affords subtle benefits during short-term cooling, such as allowing D. melanogaster to remain active at lower temperatures than they otherwise could.[Abstract] [Full Text] [Related] [New Search]