These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A GrpE mutant containing the NH(2)-terminal "tail" region is able to displace bound polypeptide substrate from DnaK. Author: Mehl AF, Heskett LD, Neal KM. Journal: Biochem Biophys Res Commun; 2001 Mar 30; 282(2):562-9. PubMed ID: 11401497. Abstract: A key feature to the dimeric structure for the GrpE heat shock protein is the pair of long helices at the NH(2)-terminal end followed by a presumable extended segment of about 30 amino acids from each monomer. We have constructed a GrpE deletion mutant protein that contains only the unique tail portion (GrpE1-89) and another that is missing this region (GrpE88-197). Circular dichroism analysis shows that the GrpE1-89 mutant still contains one-third percent alpha-helical secondary structure. Using an assay that measures bound peptide to DnaK we show that the GrpE1-89 is able to lower the amount of bound peptide, whereas GrpE88-197 has no effect. Additionally, when the same peptide binding assay is carried out with the COOH-terminal domain of DnaK, the full-length GrpE and the two GrpE deletion mutants show little to no effect on peptide release. Furthermore, the GrpE88-197 mutant is able to enhance the off-rate of nucleotide from DnaK and the 1-89 mutant has no effect on the nucleotide release. Similar results of nucleotide release are observed with the NH(2)-terminal ATPase domain mutant of DnaK. The results presented show directly that there is interaction between the GrpE protein's "tail" region and the substrate COOH-terminal peptide binding domain of DnaK, although the effect is only fully manifest with an intact full-length DnaK molecule.[Abstract] [Full Text] [Related] [New Search]