These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxic vasodilation in porcine coronary artery is preferentially inhibited by organ culture.
    Author: Thorne GD, Shimizu S, Paul RJ.
    Journal: Am J Physiol Cell Physiol; 2001 Jul; 281(1):C24-32. PubMed ID: 11401824.
    Abstract:
    Hypoxia (95% N2-5% CO2) elicits an endothelium-independent relaxation (45-80%) in freshly dissected porcine coronary arteries. Paired artery rings cultured at 37 degrees C in sterile DMEM (pH approximately 7.4) for 24 h contracted normally to KCl or 1 microM U-46619. However, relaxation in response to hypoxia was sharply attenuated compared with control (fresh arteries or those stored at 4 degrees C for 24 h). Hypoxic vasorelaxation in organ cultured vessels was reduced at both high and low stimulation, indicating that both Ca2+-independent and Ca2+-dependent components are altered. In contrast, relaxation to G-kinase (sodium nitroprusside) or A-kinase (forskolin and isoproterenol) activation was not significantly affected by organ culture. Additionally, there was no difference in relaxation after washout of the stimulus, indicating that the inhibition is specific to acute hypoxia-induced relaxation. Simultaneous force and intracellular calcium concentration ([Ca2+]i) measurements indicate the reduction in [Ca2+]i concomitant with hypoxia at low stimulus levels in these tissue is abolished by culture. Our results indicate that organ culture at 37 degrees C specifically attenuates hypoxic relaxation in vascular smooth muscle by altering dynamics of [Ca2+]i handling and decreasing a Ca2+-independent component of relaxation. Thus organ culture can be a novel tool for investigating the mechanisms of hypoxia-induced vasodilation.
    [Abstract] [Full Text] [Related] [New Search]